ROUND I: Elementary Number Theory

ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM

1. An integer is divisible by 20, is a multiple of 30, and has 40 as a factor. What is the least positive integer that satisfies these conditions?

2. The numbers in this problem are all base 4. Find the sum of the least common multiple of 2_4 and 12_4 , and the greatest common factor of 100_4 and 30_4 . Give your answer in base 4.

3. Noting that 999999 = 1000000 - 1, factor 9999999 into its prime factorization.

ANSWERS (1 pt) 1._____

(2 pts) 2._____4

(3 pts) 3._____ Bancroft, Mass Academy, Tantasqua

ROUND II: Algebra I — Open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM.

1. Evaluate
$$\frac{-2^x}{2x^0}$$
 for $x = 2$.

2. Simplify:	$\frac{x+1}{x-1} + $	$\frac{x-1}{x+1}$
	$\frac{x-1}{x+1}$	x + 1 x - 1
	$\frac{x+1}{x-1}$ -	$\frac{x-1}{x+1}$

3. A five digit number is such that with a 2 after it, it is three times as large as it is with a 2 before it. (This compares two six- digit numbers.) What is the five digit number?

ANSWERS	
(1 pt)	1

(2 pts) 2._____

(3 pts) 3._____

Auburn, Clinton, Shrewsbury, QSC

ROUND III: Theory of polynomial equations and functions, complex numbers

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

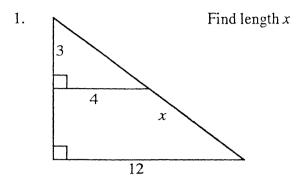
1. One of the zeros of $P(x) = x^3 + 4x^2 - 7x - 10$ is -1. Find the <u>other</u> zeros of P.

2. Evaluate
$$\left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^{23}$$

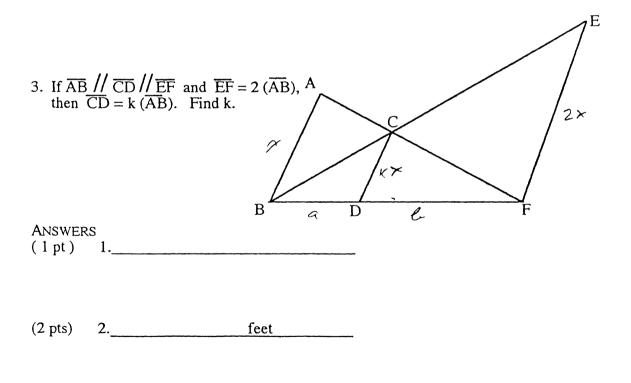
3. $(x + 1)(x + 2)^2(x + 3) - 72 = 0$ has two real and two imaginary roots. Find <u>either</u> imaginary root. Answer in simplest radical form with *i*, not decimal form, if a radical is involved.

ANSWERS (1 pt) 1._____

(2 pts) 2._____


.

(3 pts) 3. Clinton, Quaboag, Shepherd Hill


WOCOMAL VARSITY MEET

ROUND IV: Similarity and Pythagorean relationships

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

2. When the lower end of a ladder that had been resting flat against a wall was pulled out four feet, the top of the ladder descended one-fifth the length of the ladder. Find the length of the ladder.

(3 pts) 3._____ Bromfield, Holy Name, Worcester Academy

ROUND V: Trigonometry - open

ALL ANSWERS MUST BE IN SIMPEST EXACT FORM SPECIFIED IN THE PROBLEM

1. Steve and Joyce are observing the Washington Monument from one-quarter mile away. The monument is 555 feet tall. What is the angle of elevation from them to the top of the monument to the nearest degree? (One mile = 5280 feet. The monument is on a slight rise, but assume that their eyes are at the level of the base of the monument.)

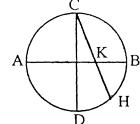
2. Find all degree values of θ between 0° and 180° inclusive for which $\tan \theta \cdot \sin \theta + 1 = \tan \theta + \sin \theta$

3. For the function $f(x) = 1 + 4 \sin(\frac{\pi}{3} - x)$, find, in terms of π , the smallest positive radian value x that makes f(x) a maximum.

ANSWERS (1 pt) 1._____

(2 pts) 2._____

(3 pts) 3._____ Bartlett, Doherty, St. John's


TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM, NO APPROXIMATIONS.

2 points each

- 1. A number is called "cute" if it has exactly 4 positive integer divisors. What percent of the first 25 positive integers are cute? Include itself and 1 as divisors.
- 2. If $1 + \frac{1 + \frac{1}{1}}{1 + \frac{1}{1 + \frac{1}{x}}} = ax + b + \frac{r}{2x + 1}, \text{ find } r$
- 3. Given that k and 2k are zeros of $f(x) = x^3 + 4x^2 + 9 kx 90$, find three zeros of f(x) as specific numerical values.
- 4. In the circle at the right \overline{AB} and \overline{CD} are perpendicular diameters and the radius is 10. If \overline{CH} =16, find \overline{BK} .
- 5. Given sin 105° = $\frac{\sqrt{6} + \sqrt{2}}{4}$ and cos 105° = $\frac{\sqrt{2} \sqrt{6}}{4}$

Find tan 52.5° exactly in a form involving simplified radicals and no irrational denominations of fractions.

- 6. What is the smallest sum of the two largest angles, in degrees, in a scalene triangle in which all angle measures are whole numbers?
- 7. Solve: $(a^2 2)^2 = 3 + 2(a^2 2)$
- 8. If the diagonal of a rectangle is $4\sqrt{3}$ and its area is 8, find its perimeter.
- 9. What is the units digits in the sum 1! + 2! + 3! + 4! + ... + 25!?

Burncoat, Hudson, Notre Dame, St.John's, Shrewsbury, Westboro, Worcester Academy

April 3, 1996		WOCOMAL VARSITY MEET ANSWERS	
NOUND I	l. lpt	120	TEAM ROUND 2 pts each
# theory	2. 2 ots	224	1. 287.
	3. 3 pts	33.7.11.13.37 any order	$-2, \frac{3}{4}$ or ,75
ROUND II Alg l	l. l pt	-2	2. 4
	2. 2 pts	$\frac{\chi^2 + l}{2\chi}$	3. -6 , -3 , 5 any order
	3. 3 pts	85714	4. 22 0 5 0 2.5
	l. lpt	-5 and 2	5. $2 + \sqrt{6} - \sqrt{2} - \sqrt{3}$
Joly en f(x) complex	2. 2 pts 3. 3 pts	$\frac{1}{2} + \frac{2\sqrt{3}}{2}$ Either $-2 + 2i\sqrt{2}$	$\mathbf{J}_{\mathbf{A}} = \mathbf{J}_{\mathbf{A}} = \mathbf{J}_{\mathbf{A}} = \mathbf{J}_{\mathbf{A}}$
		or -2-2~1/2	- 6. <u>121°</u>
ROUND IV	l. l ot	10	
similar Pytha <i>q</i>	2. 2 nts	$6\frac{2}{3} = \frac{20}{3} = 6.6$	71, 1, -V5, V5 any order, ± OK
	3. 3 pts	$\frac{2}{3}$ or $.6$	
ROUND V	l. l pt	23°	8. 16
Trig	2. 2 pts	45° <u>1177</u> 6	9. 3
	3. 3 pts	<u>// 77</u> <u>6</u>	